Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Correlation Between Oxygen Content δ and Metal-Insultor Transition in Sm_{1.85}Ce_{0.15}CuO_{4- δ} Antiferromagnetic Superconductor *

H. C. Ku, B. C. Chang, Y. Y. Hsu Dept. of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, ROC

The role and amount of oxygen content parameter δ on the metal-insulator transition and superconductivity in oxygen-reducing $Sm_{1.85}Ce_{0.15}CuO_{4-\delta}$ antiferromagnetic superconductor ($T_N(Sm/Ce)=5$ K) remains unclear up to now. The possibility of carrier (electrons or holes?) localization or depletion due to extra oxygen atoms in the partially-occupied apical site of 214 T'-phase (space group I4/mmm) is studied through x-ray Reitveld structural refinement, oxygen iodometric titration and oxygen K-edge x-ray-absorption analysis. The essential and related question concerning the valence of $Ce^{3+\alpha}$ on electron-doping is analyzed through magnetic study between undoped $Sm_2CuO_{4-\delta}$ ($T_N(Sm)=6$ K) and insulating $Sm_{1.85}Ce_{0.15}CuO_{4-\delta}$. In addition, d-wave-like power law behavior was observed for $T_c=21$ K $Sm_{1.85}Ce_{0.15}CuO_{4-\delta}$ and 23 K $Pr_{1.85}Ce_{0.15}CuO_{4-\delta}$ superconductors.

^{*}Research supported by the National Science Council of ROC under contracts no. NSC-89-2112-M007-088 and -090.